
Object Detection & Tracking

Fatih Porikli and Alper Yilmaz

Abstract Detecting and tracking objects are among the most prevalent and challenging tasks that
a surveillance system has to accomplish in order to determine meaningful events and suspicious
activities, and automatically annotate and retrieve video content. Under the business intelligence
notion, an object can be a face, a head, a human, a queue of people, a crowd as well as a product
on an assembly line. In this chapter we introduce the reader to main trends and provide taxonomy
of popular methods to give an insight to underlying ideas as well as to show their limitations in the
hopes of facilitating integration of object detection and tracking for more effective business oriented
video analytics.

Key words: detection, tracking, representations, descriptors, features

1 Introduction

Visual surveillance in dynamic business environments attempts to detect, track, and recognize objects
of interest from multiple videos, and more generally to interpret object behaviors and actions. For
instance, it aims to automatically compute the flux of people at public areas such as stores and travel
sites, and then attain congestion and demographic analysis to assist in crowd traffic management
and targeted advertisement. Such intelligent systems would replace the traditional surveillance setups
where the number of cameras exceeds the capacity of costly human operators to monitor them.

Proceeding with a low-level image features to high-level event understanding approach, there
are three main steps of visual analytics: detection of objects and agents, tracking of such objects
and indicators from frame to frame, and evaluating tracking results to describe and infer semantic
events and latent phenomena. This analogy can be extended to other applications including motion-
based recognition, access control, video indexing, human-computer interaction, and vehicle traffic
monitoring and navigation. This chapter reviews fundamental aspects of the detection and tracking
steps to support a deeper appreciation of many applications presented in the rest of the book.

Imagine waiting for your turn in a shopping line at a busy department store. Your visual system
can easily sense humans and identify different layers of their interactions. As with other tasks that
our brain does effortlessly, visual analytics has turned long out to be entangled for machines. Not
surprisingly, this is also an open problem for visual perception.

F. Porikli
Mitsubishi Electric Research Laboratories, USA e-mail: fatih@merl.com

A. Yilmaz

The Ohio State University, USA e-mail: yilmaz.15@osu.edu

1

2 Fatih Porikli and Alper Yilmaz

Fig. 1 Fundamental tasks of a video analytics framework based on object detection and tracking.

The main challenge is the problem of variability. A visual detection and tracking system needs
to generalize across huge variations in object appearance such due for instance to viewpoint, pose,
facial expressions, lighting conditions, imaging quality or occlusions while maintaining specificity to
not claim everything it sees are objects of interest. In addition, these tasks should preferably be
performed in real-time on conventional computing platforms.

One can ask the question which of the two tasks is easier and which comes first? Within detection,
motion changes and appearance cues can be used to distinguish objects, which typically renders it
relatively easily, and tracking techniques are often triggered by detection results. Combination of
statistical analysis of visual features and temporal motion information usually lead to more robust
approaches. For systems that face noisy conditions, however, tracking is suggested to be followed
by detection to gather sufficient statistic as several track-before-detect algorithms propose. Besides,
tracking steer to choose detection regions, source and sink areas. In any case, it has been common in
the past few years, to assume that different strategies are required for these different tasks. Here we
take the theoretical view that detection and tracking, rather than being two distinct tasks, represent
two points in a spectrum of generalization levels.

Figure ?? illustrates a procedural flow of these reciprocal tasks intertwined with the object mod-
eling. In the following sections, we attempt to give an overview of the popular choices for the object
detection, modeling, and tracking stages for which a plethora of solutions have been evidently and
inevitably produced over the past several decades.

2 Object Detection

Object detection is essential to initialize tracking process. It is continually applied in every frame.
A common approach for moving object detection is to use temporal information extracted from a
sequence of images, for instance by computing inter-frame difference, learning a static background
scene model and comparing it with the current scene, or finding high motion areas. Another popular

Object Detection & Tracking 3

Fig. 2 Motion history images obtained by aggregating frame differences (c© A. Ahad, 2010, Springer).

approach to object detection is to slide a window across the image (possibly at multiple scales),
and to classify each such local window as containing the target or background. Alternatively, local
interest points are extracted from the image, and then each of the regions around these points can
be classified, rather than looking at all possible subwindows.

2.1 Change Detection

Change detection is the identification of changes in the state of a pixel through the examination of
the appearance values between sets of video frames. Some of the most commonly used changed de-
tection techniques are frame differencing, background subtraction, motion segmentation, and matrix
decomposition.

2.1.1 Frame Differencing & Motion History Image

Frame differencing is the intensity dissimilarity between two frames assuming that intensity change
of a pixel apparently indicate something changing in the image, e.g. a moving object. It simply
subtracts the current image from the previous or a reference image. It has been well studied since
the late 70s. In general, the frame difference method is sensitive to illumination changes and it cannot
detect an object once it becomes stationary.

Motion History Image [?] is obtained by successive layering of frame differences. For each new
frame, existing frame differences are decreased in value subject to some threshold and the new
silhouette (if any) is overlaid at maximal brightness. Motion history can also be reconstructed by
foreground masks. It has the advantage that a range of times from frame-to-frame to several seconds
may be encoded in a single image. A sample motion history image is shown in Figure ??.

2.1.2 Background Subtraction

Detection can be achieved by building a representation of the scene, called the background model,
and then observing deviations from this model for each incoming frame. Any gradual change from
the background model is assumed to signify a moving object.

Earlier approaches use simple filters to make a prediction of background pixel intensities. In [?]
Kalman filtering is used to model background dynamics. Similarly, in [?] Wiener filtering is used to
make a linear predictions at the pixel level. Foreground regions consisting of homogeneous color are
filled in at the region level, and in case most of the pixels in a frame exhibit sudden change, the
background models are assumed no longer valid at the frame level. At this point either a previously
stored pixel based background model is swapped in, or the model is reinitialized.

4 Fatih Porikli and Alper Yilmaz

Fig. 3 Sample foreground detection results for GMM (middle row) and Layered model with Bayesian Update (bottom

row). When the background changes more than the preset variance of the GMM it produces false alarms.

To learn changes in time, [?] proposed to model each pixel with a single Gaussian distribution.
Once this background model is derived by updating in several consecutive frames, the likelihood of
current pixel color coming from the corresponding model is computed, and the pixels that deviate
significantly from their models are labeled as the foreground pixels.

However, a single Gaussian is not a good model for dynamic scenes [?] as multiple colors may be
observed at a pixel due to repetitive object motion, shadows or reflectance. A substantial improve-
ment is achieved by using multi-modal statistical models to describe background color. For instance,
in [?] use a Gaussian Mixture Model (GMM) to represent a background pixel. GMM compares a pixel
in the current frame with every model in the mixture until a matching Gaussian is found. If a match
is found the mean and variance of the matched Gaussian is updated, otherwise a new Gaussian with
the mean equal to the current pixel color and some initial variance is introduced into the mixture.

As an alternative to mixture models, a Bayesian approach that model each pixel as a combination
of layered Gaussians is proposed in [?]. Recursive Bayesian estimation is performed to update the
background parameters to better preserve the multi-modality of the background model than the
conventional expectation maximization fitting, and to automatically determine the number of active
layers for each pixel. Moving regions, which are detected using the GMM and layered approaches are
shown in Figure ??.

Instead of relying only a pixel, GMM’s can be trained to incorporate extended spatial information.
In [?] a non-parametric kernel density estimation is used to refit a density function every time to
multiple previous pixel values. During the subtraction process the current pixel is matched not
only to the corresponding background model but also to the nearby pixel locations. Thus, some
robustness against camera jitter or small movements in the background is obtained. Similar affects
can be achieved by extending the support to larger blocks and using texture features that are less
sensitive to inter-frame illumination variations. Although nonparametric models are robust against
small changes they are computationally and memory-wise expensive. Besides, extending the support
causes small foreground objects to disappear.

A shortcoming of above background methods is that they neglect the temporal correlation among
the previous values of a pixel. This prevents them detecting a structured or near-periodic changes,
for example the alternating signals in an intersection, the motion of plants driven by wind, the action
of waves on a beach, and the appearance of rotating objects.

A frequency decomposition based background generation that explicitly harnesses the scene dy-
namics is proposed in [?]. To capture the cyclostationary behavior of each pixel, the frequency
coefficients of the temporal variation of pixel intensity are computed in temporal windows and a
background model that is composed of frequency coefficients is maintained and fused with distance
maps to eliminate trail effects.

Object Detection & Tracking 5

An alternate approach is to represent the intensity variations of a pixel in an image sequence as
discrete states and using Hidden Markov Model (HMM), and switching among these states with the
observations to classify pixels [?]. The advantage of using HMMs is that certain events, which may
not be modeled correctly by unsupervised algorithms, can be learned using the provided training
samples.

2.1.3 Motion Segmentation

Motion segmentation refers to the assignment of groups of pixels to various classes based on the speed
and direction of their movements. Most approaches to motion segmentation first seek to compute the
optical flow of the image sequence. Discontinuities in the optical flow can help in segmenting images
into regions that correspond to different objects. Optical flow can arise from relative motion of objects
and the camera. Using the rate of change of the image intensity and by assuming that the brightness
function changes smoothly, the flow velocity is attained by minimizing a global error function. By
assuming a locally constant flow, robustness against noise at the expense of the resolution of their
optical field can be improved. From representing moving objects using sets of overlapping layers
obtained by k-means clustering to variational methods that jointly solves the problems of motion
estimation and segmentation for two consecutive frames in a sequence, many different flow based
motion segmentation methods exist.

One way is to estimate the consistency of optical flow over a short duration of time [?] where the
significant variation of accumulated local optical flows represent the dynamic features of nonstation-
ary background objects. Towards the modeling of the dynamic characteristics, in [?] optical flow is
computed and utilized as a feature in a higher dimensional space. In order to properly utilize the
uncertainties in the features, a kernel based multivariate density estimation technique that adapts
the bandwidth according the uncertainties in the test and sample measurements is incorporated.

Optical flow computation will be in error if the constant brightness and velocity smoothness
assumptions are violated. In real imagery, their violation is quite common. Typically, the optical flow
changes dramatically in highly textured regions, around moving boundaries, at depth discontinuities,
etc. Resulting errors propagate across the entire optical flow solution.

2.1.4 Matrix Decomposition

Instead of modeling the variation of individual pixels, the whole image can be vectorized and used
in background modeling. In [?] a holistic approach using eigenspace decomposition is proposed.
For a certain number of input frames, a background matrix is formed by cascading the rows in
each frame one after the other, and eigenvalue decomposition is applied to the covariance of the
matrix. The background is then represented by the most descriptive eigenvectors, that encompass all
possible illuminations to decrease sensitivity to illumination. The foreground objects are detected by
projecting the current image to the eigenspace and finding the difference between the reconstructed
and actual images.

Instead of the conventional background and foreground definition, an intrinsic image inspired
method that decomposes a scene into time-varying background and foreground intrinsic images are
proposed in [?]. The multiplication of these images reconstructs the scene. First, a set of previ-
ous images are formed into a temporal scale and their spatial gradients are computed. By taking
advantage of the sparseness of the filter outputs, the background is estimated by median filtering
of the gradients, the corresponding foreground is found using the background. The intrinsic back-
ground/foreground decomposition is robust even under sudden and severe illumination changes, yet
computationally expensive.

A learning-based background subtraction approach based on the theory of sparse representation
and dictionary learning is proposed in [?]. This method makes the following two important assump-

6 Fatih Porikli and Alper Yilmaz

Fig. 4 Background and foreground decompositions are obtained by matrix decomposition.

tions: (1) the background of a scene has a sparse linear representation over a learned dictionary; (2)
the foreground is sparse in the sense that majority pixels of the frame belong to the background.
These two assumptions enable handling both sudden and gradual background changes. To build a
correct background model when training samples are not foreground-free, a robust dictionary learning
algorithm is used.

Learning based foreground and background decompositions for a sequence where the background
significantly changes (upper and right half of the images are distorted) are shown in Figure ??.

2.2 Classifiers

Object (e.g. human) detection can be performed by learning a classification function that captures
the variation in object appearances and views from a set of labeled training examples in a supervised
framework. The input of the classification function is a test region and the output is the estimated
label. i.e. object or not. Selection of features plays an important role in the performance of the
classification, hence, it is important to use a set of features that discriminate one class from the
other. Once the features are selected, different learning approaches can be applied including, but
are not limited to, neural networks, boosting, decision trees, and support vector machines. These
learning methods compute a hypersurface that separates one object class from the other in a high
dimensional space.

Boosting is an iterative method of finding a very accurate classifier by combining many base clas-
sifiers, each of which may only be moderately accurate [?]. In the training phase of the AdaBoost
algorithm, the first step is to construct an initial distribution of weights over the training set. The
boosting mechanism then selects a base classifier that gives the least error, where the error is propor-
tional to the weights of the misclassified data. Next, the weights associated with the data misclassified
by the selected base classifier are increased. Thus the algorithm encourages the selection of another
classifier that performs better on the misclassified data in the next iteration. In the context of object
detection, weak classifiers can be simple operators such as a set of thresholds, applied to the object
features extracted from the image windows.

Support Vector Machines (SVM) are used to cluster data into two classes by finding the maximum
marginal hyperplane that separates one class from the other [?]. The margin of the hyperplane, which
is maximized, is defined by the distance between the hyperplane and the closest data points. The
data points that lie on the boundary of the margin of the hyperplane are called the support vectors.
Despite being a linear classifier, SVM can also be used as a non-linear classifier by applying the kernel

Object Detection & Tracking 7

Fig. 5 Detection examples. The classifier is trained on the INRIA data set. White dots show all the detection results.

Black dots are the modes generated by mean shift smoothing, and the ellipses are average detection window sizes.

There are extremely few false positives and negatives.

trick to the input feature vector extracted from the input. Application of the kernel trick to a set of
data that is not linearly separable, transforms the data to a higher dimensional space which is likely
to be separable. The kernels used for kernel trick are polynomial kernels or radial basis functions,
e.g. Gaussian kernel, and two layer perceptron, e.g. a sigmoid function. However, the selection of
the right kernel for the problem at hand is not easy. Once a kernel is chosen one has to test the
classification performance for a set of parameters which may not work as well when new observations
are introduced to the sample set.

Leading approaches in classification based object detection can be separated into two groups based
on the search technique. The first group of methods is based on sequentially applying a classifier at
all the possible subwindows in a given image. In [?], a polynomial support vector machine (SVM) was
learned using Haar wavelets as object descriptors. Later, the work was extended to multiple classifiers
trained to detect object parts, and the responses inside the detection window are combined to give the
final decision [?]. In [?], a human detector was described by training an SVM classifier using densely
sampled histogram of oriented gradients inside the detection window. In a similar approach [?],
near real time detection performances were achieved by training a cascade model using histogram of
oriented gradients (HOG) features by taking advantage of the integral histograms [?]. Similar to still
images, in [?], a moving human detection algorithm was described using Haar wavelet descriptors but
extracted from space-time differences in video. The operators in the space-time domain are in the
form of frame differencing which encode some form of motion information, and frame differencing,
when used as an operator in the temporal domain, is assumed to reduce the number of false detections
by enforcing object detection in the regions where the motion occurs.

Instead of Haar wavelets or HOG features, region covariance matrices [?] are utilized as object de-
scriptors in [?]. A region was represented by the covariance matrix of image features, such as spatial
location, intensity, higher order derivatives, etc. Similarly, an object is modeled with several covari-
ance matrices of overlapping regions. Since these descriptors do not lie on a vector space, conventional
machine learning techniques are not adequate to learn the classifiers. The space of nonsingular covari-
ance matrices can be represented as a connected Riemannian manifold. For classification of points
lying on a Riemannian manifold a manifold learning method is presented by incorporating the a
priori information about the geometry of the space. Typical human detection results generated by
this method is shown in Figure ??.

The second group of methods is based on detecting object parts [?] or common shapes [?] and
assembling these local features according to geometric constraints to form the final model. In [?],
parts were represented by co-occurrences of local orientation features and separate detectors were
trained for each part using AdaBoost. Object location was determined by maximizing the joint
likelihood of part occurrences combined according to the geometric relations. A human detection
system for crowded scenes was described in [?]. The approach combined local appearance features and
their geometric relations with global cues by top-down segmentation based on per pixel likelihoods.
Other approaches include using silhouette information either in matching [?] or in classification
framework [?].

8 Fatih Porikli and Alper Yilmaz

Fig. 6 Different layers of object modeling can be categorized under the representations, descriptors, and low-level

features.

Supervised learning methods usually require a large collection of samples from each object class.
A possible approach to reduce the amount of manually labeled data is to accompany co-training to
supervised learning [?]. The main idea behind co-training is to train two classifiers using a small set
of labeled data, where the features used for each classifier are independent. After training is achieved,
each classifier is used to assign unlabeled data to the training set of the other classifier. Co-training
has been used to reduce the amount of manual interaction required for training in the context of
AdaBoost [?] and SVM [?].

An alternative classifier based detection of the foreground regions is attempted using corner-based
background models [?]. Instead of processing every pixel, this algorithm detects a certain number
of feature points using a Harris corner detector and a scale-invariant feature point descriptor. It
dynamically learns a single background model and classify each extracted feature as either a back-
ground or a foreground feature using a motion tracker to differentiate motion consistent foreground
points from background points with random or repetitive motion. Since feature point extraction and
descriptor generation are computationally expensive, this algorithm may not be suitable for real-time
applications if number of feature points are excessive.

3 Object Modeling

To keep track of location and other properties of the detected objects, one must have an internal
representation of an object suitable for matching its descriptor to image features. In this section, we
will describe the various object model representations, descriptors, and features commonly employed
for tracking (Figure ??). In general, there is a strong relationship between the object representations,
descriptions, their low-level features and applications.

3.1 Model Representations

Object representations are usually chosen according to the application domain. The model selected
to represent object shape limits the type of motion or deformation it can undergo. For example if an
object is represented as a point then only a translational model can be used. In case if a geometric
shape representation, like ellipse, is used for the object then parametric motion models like affine
or projective transformations are appropriate. These representations can approximate the motion
of rigid objects in the scene. For a non-rigid object, silhouette or contour is the most descriptive
representation and both parametric and non-parametric models can be used to specify their motion.
We explain some of these representations (as illustrated in Figure ??) in more detail below.

Object Detection & Tracking 9

Fig. 7 From left to right: object region, elliptical region, silhouette (contour), part-based, skeletal representations.

3.1.1 Point & Region

Many methods represent an object by a predefined shape around its centroid [?] or a set of points [?].
Object shape can be defined as a rectangle, ellipse, etc. on the imaging plane or on the physical ground
plane. Often such shapes are normalized into a fixed size to simplify feature extraction. In general,
motion for such representations is modeled by simple translation, similarity, affine or homography
transformations. Though primitive shapes are more suitable for representing simple rigid objects,
they are also used for tracking non-rigid objects.

3.1.2 Silhouette

Silhouette is the region inside the contouring boundary of object. The most common silhouette
representation is in the form of a binary indicator function, which marks the object region by ones
and the non-object regions by zeros. For contour based methods, the silhouette is represented either
explicitly or implicitly. Explicit representation defines the boundary of the silhouette by a set of
control points. Implicitly representation defines the silhouette by means of a function defined on a
grid. The most common implicit contour representation is the level sets representation.

A traditional explicit contour structure is composed of a set of points (tuples) on the contour
along with a set of spline equations, which are real functions fit to the control points generated from
the tuples. A natural choice is cubic spline defined using piecewise cubic polynomials, between the
tuples. The piecewise analytical contour form provides the ability to estimate differential descriptors
with ease. The analytical form, however, does not let changes in the contour topology (merging and
splitting), which is necessary during contour evolution.

Alternatively, contour in an image can be implicitly defined using the level set [?]. In this formal-
ism, the position of a contour is embedded as the zero level set in a two dimensional function. The
value at a grid position (e.g. local object coordinates) is commonly set to its distance from the clos-
est contour location and is computed by applying a distance transform. The level set representation
has attracted much attention due to its ability to adapt to topology changes, direct computation of
differential contour features (e.g. contour curvature), and extendibility to higher dimensions with no
change in formulation.

3.1.3 Connected Parts

Articulated objects are composed of parts that are held together with joints. Depending on the
granularity of choice, parts of a human body can be grouped into head, torso, arms and legs, which
can be defined as geometric primitives, such as rectangles, cylinders and ellipses [?]. The relationship
between the parts are governed by kinematic motion models, e.g. joint angle. An important issue
that needs explicit handling is the occlusion problem that arises when one part is behind the others
making it invisible. Occluded parts constitute missing observations and can be dealt with by applying

10 Fatih Porikli and Alper Yilmaz

heuristics or by enforcing learned part-arrangements. In addition, the degree of articulation increases
the complexity of the models.

3.1.4 Graph & Skeletal

Another spatial representation is the skeletal models which are used to animate characters and
humans in graphics. Skeleton is an articulated structure with a set of curve segments and joints
connecting them [?]. Object skeleton can be extracted by applying medial axis transform, which
takes the object silhouette and iteratively computes the set of points lying on its topological skeleton
such that each point has more than one closest points to the bounding contour. Alternatively, it is
termed as the loci of centers of bi-tangent circles that fit within the object silhouette.

Learned skeletal representations have many possible uses. For example, manually constructed
skeletal models are often a key component in full-body tracking algorithms. The ability to learn
skeletal structure could help to automate the process, potentially producing models more exible and
accurate than those constructed manually.

The motion of an articulated object can be described as a collection of rigid motions, one per
part, with the added constraint that the motions of connected parts must be spatially coherent. This
constraint causes the motion subspaces of two connected objects to intersect, making them linearly
dependent. In particular, for each pair of connected parts, the motion subspaces share one dimension
(translation) if they are joined at a point and two dimensions (translation and one angle of rotation)
if they are joined at an axis of rotation.

3.1.5 Spatiotemporal

While spatial representations lacks motion indicators, there are specific representations that are
defined in the spatiotemporal space and inherently convey the motion information. Spatiotemporal
representations can be extracted by local analysis or by looking at the space-time cube globally. Local
representations are composed of a set of points that present characteristic motion and appearance
content. The point set is commonly treated as a bag of features without temporal order. Space-time
cube [?], which is generated by stacking video frames, can be considered a volumetric 3D image. An
important observation about the space-time cube is that aside from providing temporal information,
it also carries a unique view geometric information when we have two cameras observing a common
scene. Alternative to using temporally sparse point sets, one can consider progression of the point set
in time by extracting their trajectories [?]. Trajectory representation is constituted of a temporally
ordered point series, which represent the position of a point starting from its initial observation at
until it disappears from the scene.

3.2 Model Descriptors

Descriptors are the mathematical embodiments of object regions. The size of the region, dynamic
range, imaging noise and artifacts play a significant role in achieving discriminative descriptors.
Generally speaking, the larger the object region, the more discriminative the descriptor will be.

A major concern for most descriptors is the lack of a competent similarity criterion that captures
both statistical and spatial properties, i.e., most approaches either depend only on the color distribu-
tions or structural models. Many different representations, from aggregated statistics to appearance
models, have been used for describing objects. Color histograms are popular representations of non-
parametric density, but they disregard the spatial arrangement of the feature values. Moreover, they
do not scale to higher dimensions due to exponential size and sparsity. Appearance models map the

Object Detection & Tracking 11

Fig. 8 HOG concatenates the bins of the local gradient histograms into a vector form (Courtesy of E. Benhaim).

image features onto a fixed size window. Since the dimensionality is a polynomial in the number of
features and the window size, only a relatively small number of features can be used. Appearance
models are highly sensitive to the pose, scale and shape variations.

3.2.1 Template

Templates are the most intuitive and commonly adopted descriptors and often formed from geometric
shapes or silhouettes. A unique property of a template is that it is an ordered list of appearance obser-
vations inside its region. This property naturally provides the template descriptor with the capability
to carry both spatial and appearance information. They can be 2D (spatial) or 3D (spatiotemporal)
depending on their use, and commonly have a shape in the form of a geometric primitive, such as
a rectangle, square, ellipse, circle or their 3D versions. They are often centered around a point and
defined by weighted spatial kernels that may have varying scalars at different pixels within the ker-
nel. The kernel function represents a convolution of the geometric primitive with the template. The
motion of the kernel from one frame to the next follows a parametric model including translation,
conformal and affine transformations.

Templates, however, only encode the object appearance generated from a single view. Thus, they
are more suitable for problems where the viewing angle of the camera and the object pose remains
constant or changes very slowly.

3.2.2 Histogram, HOG, SIFT

Histogram is a distribution based descriptor that estimates the probability distribution from the
observations within a spatial or spatiotemporal region defined by a template, silhouette or a volume.
The observations considered can be raw color values, derivative information or texture measures.
Color distributions are generally estimated non-parametrically by a histogram, or parametrically by
mixture models.

The histogram, which is a common choice, can be generated by first defining the number of bins
(quantization levels) and counting the number of observations that fall into respective bins. While
a histogram can be generated using raw color or intensity values, they may need to be processed,
such as mean color adjustment, prior to estimating the histogram to remove the illumination and
shadowing effects. This adjustment can be achieved by subtracting the mean color computed in the
neighborhood of the region of interest.

Alternative to using color values, image gradient is adapted for generating a distribution based
descriptor. Two closely related approaches are the Scale Invariant Feature Transform (SIFT) descrip-
tors [?] and the Histogram of Oriented Gradients (HOG) [?, ?]. Both of these approaches compute
the gradient of intensity and construct a histogram of gradient orientations weighted by the gradient
magnitude (Figure ??). Shared steps between the two approaches can be listed as follows:

12 Fatih Porikli and Alper Yilmaz

Input: Image and regions of interest
Output: Histograms
foreach region R do

foreach (x, y) ∈ R do
compute the gradient:
∇I(x, y) = (Ix, Iy) =

(
I(x− 1, y)− I(x+ 1, y), I(x, y − 1)− I(x, y + 1)

)
;

compute gradient direction: θ(∇I(x, y) = arctan(Ix, Iy);

compute gradient magnitude: |∇I(x, y)| = (Ix ∗ Ix + Iy ∗ Iy)1/2;
if |∇I(x, y)| ≥ τ then

Increment histogram bin for θ(∇I(x, y));
end

end
smooth histogram;

end

Aside from the common steps outlined above, SIFT approach computes the major orientation from
the resulting histogram and subtracts it from computed orientations to achieve rotation invariance.
HOG, on the other hand does not perform orientation normalization. SIFT generates more number
of interest points compared to other interest point detectors. This is due to the fact that the interest
points at different scales and different resolutions (pyramid) are accumulated. Empirically, it has
been shown in [?] that SIFT is more resilient to image deformations. More recently the color based
SIFT method is introduced and is widely adopted [?].

Another possibility is to generate the histogram defining the shape of the object. Shape histograms
model the spatial relation between the pixels lying on the contour. The spatial relation between a
reference point on the contour with respect to other points is modeled by a histogram, and a set of
such histograms, which are generated by taking all or randomly chosen contour points individually
as a reference, provides a distribution based descriptor. The spatial relation between two points is
measured by computing the angle and magnitude of the vector joining them. Similarly, shape context
uses a concentric circular template centered on a reference contour point, which provide the bins of
the histogram in the polar coordinates [?].

In all cases, a commonly used approach to compare histograms is Bhattacharya distance.

3.2.3 Region Covariance

The region covariance matrix proposes a natural way of fusing multiple features. Its diagonal entries
represent the variance of each feature and the nondiagonal entries represent the correlations. The
noise corrupting individual samples are largely filtered out with an average filter during covariance
computation.

For a given region R, let F (x, y, i) be the pixel feature values. Features i = 1, .., d can be any
mapping including pixel’s Cartesian coordinates, intensity, color, gradient, texture, filter responses,
etc. For instance, F (., ., 1) can be assigned to the x-gradient: F (x, y, 3) = Ix(x, y). Region covariance
descriptor C represents the region R with the d× d covariance matrix of the pixel-wise features

C =

 c11 · · · c1d...
. . .

...
cd1 · · · cdd

 and cij =
1

NR − 1

NR∑
n=1

(F (xn, yn, i)− µi) (F (xn, yn, j)− µj) (1)

where µ is the mean of the corresonding feature for all NR pixels in the region.
There are several advantages of using covariance matrices as region descriptors. It is a natural

way of fusing multiple features. A single covariance matrix extracted from a region is usually enough
to match the region in different views and poses. The covariance of a distribution is enough to

Object Detection & Tracking 13

discriminate it from other distributions. The covariance matrices are low-dimensional compared to
other region descriptors and due to symmetry it has only (d2 + d)/2 different values. This provides
significant robustness to object variations while keeping the descriptor efficiently discriminative.
Whereas if the same region is described with joint histograms a total of Bd values, where B is the
number of histogram bins, are needed, which renders such joint histograms very fragile.

Distance Calculation: The covariance matrices do not lie on Euclidean space. For example, the
space is not closed under multiplication with negative scalers. Most of the common machine learning
methods work on Euclidean spaces and therefore they are not suitable for our features. The nearest
neighbor algorithm which will be used in the following sections, only requires a way of computing
distances between feature points. A distance measure is proposed in [?] to measure the dissimilarity
of two covariance matrices

ρ2(C1, C2) =

d∑
i=1

ln2λi(C1, C2) (2)

where {λi(C1, C2)} are the generalized eigenvalues of C1 and C2. The distance measure follows from
the Lie group structure of positive definite matrices and an equivalent form can be derived from the
Lie algebra of positive definite matrices. We refer the readers to [?] for a detailed discussion on the
distance metric.

3.2.4 Ensembles & Eigenspaces

Ensemble descriptors keep a combination of weak or partial descriptors. More specifically, the ensem-
ble tracking [?] works by constantly updating a collection of weak classifiers to separate the object
from its background. The weak classifiers can be added or removed at any time to reflect changes
in the object appearance or incorporate new information about the background. Hence, object is
not represented explicitly, instead an ensemble of classifiers is used to determine if a pixel belongs
to the object or not. Each weak classifier is trained on positive and negative examples where, the
examples coming from the object are positive examples and examples coming from the background
are negative examples. The strong classifier is then used to classify the pixels in the next frame,
producing a confidence map of the pixels, where the classification margin is used as the confidence
measure. The peak of the map is assumed to be the location of the object in the current frame. Once
the detection for the current frame is completed, a new weak classifier is trained on the new frame,
added to the ensemble, and the process is repeated all over again.

Given a set of images, eigenspace approaches construct a small set of basis images that characterize
the majority of the variation in the training set and can be used to approximate any of the training
images. For each image in a training set of p images a 1D column vector is constructed by scanning
the image in the standard lexicographic order. Each of these 1D vectors becomes a column in a data
matrix. The number of training images is assumed to be less than the number of pixels, and Singular
Value Decomposition (SVD) is used to decompose the data matrix into 1) an orthogonal matrix of
the same size as the data matrix representing the principal component directions in the training set,
2) a diagonal matrix with singular values sorted in decreasing order along the diagonal, and 3) an
orthogonal matrix that encodes the coefficients to be used in expanding each column of the data
matrix in terms of the principal component directions.

It is possible to approximate some new image vector in terms of the orthogonal matrix columns
that have comparably higher singular values by taking the dot product of the image vector and the
columns of the orthogonal matrix. This amounts to a projection of the input image onto the subspace
defined by the largest basis vectors. The eigenspace can be thought of as a compact view-based object
representation that is learned from a set of input images. Previously observed views of an object can
be approximated by a linear combination of the basis vectors. This can be thought of as matching
between the eigenspace and the image.

14 Fatih Porikli and Alper Yilmaz

3.2.5 Appearance Models

Active appearance models are generated by simultaneously modeling the object shape and appear-
ance [?]. In general the object shape is defined by a set of landmarks. Similar to the contour based
representation, the landmarks can reside on the object boundary or alternatively, they can reside
inside the object region. For each landmark, an appearance vector is stored which is in the form
of color, texture or gradient magnitude. Active appearance models require a training phase where
both the shape and its associated appearance is learned from a set of samples using, for instance,
the principal component analysis.

3.3 Model Features

The use of a particular feature set for tracking can also greatly affect the performance. Generally, the
features that best discriminate between multiple objects and, between the object and background are
also best for tracking the object. Many tracking algorithms use a weighted combination of multiple
features assuming that a combination of preselected features will be discriminative. A wide range of
feature selection algorithms have been investigated in the machine learning and pattern recognition
communities. However, these algorithms require off-line training information about the target and/or
the background. Such information is not always available. Moreover, as the object appearance or
background varies, the discriminative features also vary. Thus, there is a need for online selection of
discriminative features. The details of common visual features are as follows.

− Color: The apparent color of an object is influenced primarily by two physical factors: 1) the
spectral power distribution of the illuminant, and 2) the surface reflectance properties of the object.
In image acquisition, the RGB (red, green, blue) color space is usually used to represent color.
However, the RGB space is not a perceptually uniform, that is, the difference between the colors in
the RGB space does not correspond to the color differences perceived by the humans [?]. Instead,
YUV and LAB are perceptually uniform, while HSV (Hue, Saturation, Value) is an approximately
uniform color space. However, these color spaces are sensitive to noise. In summary, there is no
last word on which color space is more efficient, therefore a variety of color spaces have been used
in tracking.

− Gradient: Object boundaries usually generate strong changes in image intensities. Edge gradient
identifies these changes. An important property of edges is that they are less sensitive to illumi-
nation changes as compared to color features. Algorithms that track the boundary of the objects
usually use edges as the representative feature. Because of its simplicity and accuracy, the most
popular edge detection approach is the Canny Edge detector [?].

− Optical Flow: Optical flow is a dense field of displacement vectors which defines the translation
of each pixel in a region. It is computed using a brightness constraint, which assumes “brightness
constancy” of corresponding pixels in consecutive frames and is usually computed using the image
derivatives [?, ?]. Optical flow is commonly used as a feature in motion-based segmentation and
tracking applications. A comparison of the popular optical flow techniques can be find in [?].

− Texture: Texture is a measure of the intensity variation of a surface which quantifies proper-
ties such as smoothness and regularity. Compared to color, texture requires a processing step to
generate the descriptors. There are various texture descriptors including gray level co-occurrence
matrices, Law’s texture measures (twenty five 2D filters generated from five 1D filters corre-
sponding to level, edge, spot, wave and ripple), wavelets, Gabor filters, and steerable pyramids.
A detailed anaysis of texture features can be found in [?]. Similar to edge features, the texture
features are less sensitive to illumination changes as compared to color.

− Corner Points: Corner points are one of the earliest and most commonly used features due to
its low computational complexity and ease of implementation. Harris corner detector, like many
others, defines texture-content by conjecturing that the change in the color content of pixels in

Object Detection & Tracking 15

the locality of a candidate interest point should be high:

E(x, y) =
∑
u

∑
v

(
I(x+ u, y + v)− I(x, y)

)2

. (3)

The Taylor series approximation of this equation around (x, y) results in

E(u, v) = [u v]

[∑
I2x

∑
IxIy∑

IxIy
∑
I2y

]
︸ ︷︷ ︸

M

[
u
v

]
. (4)

This equation contains the commonly termed structure tensor M, which is a second moment com-
puted from the template around the candidate. This matrix defines an ellipse with minor and
major axes denoted by its eigenvectors and their extent by respective eigenvalues. The eigenval-
ues, λi of M are computed from its characteristic equation: λ2 + det(M) − λ · trace(M) = 0, which
suggests that using determinant and trace of M should suffice in marking interest points as stated
in [?]. Therefore, the traditional texture content measure min(λ1, λ2) can be approximated by
det(M) − c · trace(M)2 for constant c. The texture content measure is computed for all pixels and
it is subjected to nonmaximal suppression which removes weak interest point candidates and
eliminates multiple candidates in small neighborhoods.
Harris detector, when applied in scale space, such as by convolving the image with a set of different
scaled Gaussian filters, provides feature points at multiple scales. The interest points coexisting
at different scales can be combined to provide scale-invariant interest points. Considering that the
shape tensor is invariant to rotations, Harris feature becomes invariant to similarity transform.
The spatial point detection scheme outlined for Harris detector is later extended to spatiotemporal
coordinates by introducing the time as an additional dimension to the formulation [?]. Limitations
of the Harris feature include its inability to locate interest points at subpixel level, and difficulty
setting the number of interest points it detects.

Mostly, features are chosen manually by the user depending on the application domain. However,
the problem of automatic feature selection has received significant attention in the pattern recognition
communities. Automatic feature selection methods can be divided into filter methods and wrapper
methods [?]. The filter methods try to select the features based on a general criteria, e.g. the features
should be uncorrelated. The wrapper methods select the features based on the usefulness of the
features in a specific problem domain, e.g. the classification performance using a subset of features.
Principal Component Analysis (PCA) is an example of the filter methods for the feature reduction.
PCA involves transformation of number of (possibly) correlated variables into a (smaller) number of
uncorrelated variables called the principal components.

A common wrapper method of selecting the discriminatory features is boosting. More specifi-
cally, AdaBoost finds a strong classifier based on a combination of moderately inaccurate “weak”
classifiers. Given a large set of features, one classifier can be trained for each feature. Adaboosts
discover a weighted combination of classifiers (representing features) that maximize the classification
performance of the algorithm. These weights indicates the discriminative power of the features.

4 Object Tracking

Given the detected object, it is then the tracker’s task to perform find its correspondence in the
following frames while constructing object’s trajectory. It is an essential component of several vision
applications as well as the video analytics for business applications. Object tracker may also provide
the complete region in the image that is occupied by the object.

16 Fatih Porikli and Alper Yilmaz

The tasks of detecting the object and establishing correspondence between the object instances
across frames can either be performed separately or jointly. In the first case, possible object regions in
every frame are obtained by means of an object detection algorithm and then the tracker corresponds
objects across frames. In the latter case, the object region and correspondence is jointly estimated
by updating object location and region information obtained from previous frames.

Robust and accurate tracking of a deforming, non-rigid and fast moving object without getting
restricted to particular model assumptions presents a major challenge. One can simplify tracking
by imposing constraints on motion and appearance of objects. For example, almost all tracking
algorithms assume the object motion to be smooth with no abrupt changes. One can further constrain
the object motion to be of constant velocity, or constant acceleration based on a priori information.
Prior knowledge about the number and the size of objects, or the object appearance and shape can
also be used to simplify the problem.

Numerous approaches for object tracking have been proposed. These primarily differ from each
other based on the way they approach the following questions: Which object representation is suitable
for tracking? Which image features should be used? How should motion, appearance and shape of
the object be modeled? The answers to these questions depend on the context/environment in which
the tracking is being performed, and the end use for which the tracking information is being sought.

For business applications, they should perform mostly partitioned indoors spaces where sudden
illumination changes, for instance due to on-and-off of a light switch, can occur. They are expected
to handle significant object size changes due to oblique views and severe occlusions due to usually
lower camera heights. They need to resolve multiple-object tracking even often the descriptors are
insufficient as people tend to dress in for instance dark clothes in business environments.

We give a brief description of most common tracking techniques in the following.

4.1 Template Matching

The most common approach in this category is template (or blob) matching. Template matching is a
brute-force method of searching the image for a region similar to the object template defined in the
previous frame. The position of the template in the current image is computed by a similarity mea-
sure, e.g. cross correlation. Usually image intensity or color features are used to form the templates.
Since image intensity is very sensitive to illumination changes, image gradients can also be used as
features. Note that instead of region templates, other object descriptors for instance, histograms
or mixture models can also be used for matching, with the same spirit of cross correlation based
exhaustive search.

A limitation of template matching is high computation cost due to the brute-force search. To
reduce the computational cost, search window is usually limited to the vicinity of its previous posi-
tion [?].

4.2 Density Estimation: Mean-Shift

Mean-shift [?] is a nonparametric density gradient estimator to find the image window that is most
similar to the object’s color histogram in the current frame. It iteratively carries out a kernel based
search starting at the previous location of the object as shown in Figure ??.

The mean-shift tracker maximizes the appearance similarity iteratively by comparing the his-
togram of the object ho and the histogram of the window around the candidate object location h?.
Histogram distance is defined in terms of the Bhattacharya distance. Minimizing the Bhattacharya
distance or alternatively maximizing the Bhattacharya coefficient ρ(ho, h?) =

∑B
b=1[ho(b)h?(b)]

1/2

Object Detection & Tracking 17

(a) (b) (c) (d) (e)

Fig. 9 Mean-shift tracking iterations: estimated object location at time t−1, (b) Frame at time t with initial location
estimate using the previous object position, (c), (d) location update using mean shift iterations, (e) final object position

at time t.

and expanding it to Taylor series suggests that the new location of the object can be iteratively
computed [?] by estimating the likelihood ratio between the model ho and candidate histograms h?.

At each iteration the candidate window is shifted towards the direction that the Bhattacharya
coefficient is maximum. The iterative process is repeated until the increase in the Bhattacharya
coefficient becomes insignificant:

− Compute the candidate histogram h?(mt−1),

− Calculate ρ(ho, h?(mt−1)) and the new weights wn =
∑B
b δ[I(xn, yn)B − b]

√
ho/h?(mt−1),

− Find new location mt by,

mt =

∑NR

n wnK̇(||xn −mt−1||)xn∑NR

n wnK̇(||xn −mt−1||)
, (5)

− Stop if ρ(ho, h?(mt)) < ρ(ho, h?(mt−1)) or ||mt −mt−1|| < ε , else mt ←mt−1 and iterate.

Above xn = [xn, yn]T , mt = [mx,my]T is the estimated location of the object, t is the iteration

index, I(xn, yn)B is the bin of the pixel value I(x, y), and K̇ is the derivative of the kernel function
K, which can be a 2D Gaussian. The kernel state is defined by the centroid of the object in spatial
coordinates, such that the estimation process results in the new object position. Alternatively, the
state can be defined by the scale, orientation and position of the object [?].

In other words, at each iteration, the mean-shift vector is computed such that the histogram
similarity is increased. This process is repeated until convergence is achieved, which usually takes
five to six iterations. For histogram generation, a weighting scheme is defined by a spatial kernel
which gives higher weights to the pixels closer to the object center [?] extended the mean shift
tracking approach used a joint spatial-color histogram instead of just color histogram.

An obvious advantage of the mean-shift tracker over the standard template matching is the elim-
ination of a brute force search, and the computation of the translation of the object patch in a
small number of iterations. However, the mean-shift tracker requires that a portion of the object
is inside the previous object region upon initialization. Even though there are variants [?] to im-
prove its localization by using additional modalities, the success of the mean-shift strongly depends
on the discriminating power of the histograms. To overcome this shortcoming, a covariance matrix
representation version is proposed in [?], and a multiple-kernel version in [?].

4.3 Regression

Regression refers to understand the relationship between multiple variables. Linear regression as-
sumes the relationship depends linearly on a model in which the conditional mean of a scalar variable
given the other variables is an affine function of those variables. Numerous procedures have been
developed for parameter estimation and inference in linear regression. Here a least squares estimator
is described for object tracking, details can be found in [?].

Suppose (αi, Xi) are the pairs of observed data α ∈ Rd in vector space and the corresponding
points on the manifold X ∈ M. The regression function ϕ maps the vector space data onto the

18 Fatih Porikli and Alper Yilmaz

Fig. 10 Regression tracking on manifold for a given region. Note that the tracking is still valid even the region

undergoes out-of-plane rotations.

manifold ϕ : Rd 7→ M. An objective function is defined as the sum of the squared geodesic distances
between the estimations ϕ(αi) and the points Xi

J =
∑
i

∆2 [ϕ(αi), Xi] . (6)

Assuming a Lie algebra on the manifold can be defined, the objective function can be approximated
as

J =
∑
i

∥∥log
[
ϕ−1(αi)Xi

]∥∥2 ≈∑
i

‖log [ϕ(αi)]− log [Xi]‖2 (7)

up to the first order terms. The regression function ϕ can be written as

ϕ(αi) = exp
(
αTi Ω

)
(8)

to learn the function Ω : Rd 7→ Rr which estimates the tangent vectors log (Xi) on the Lie algebra
where Ω is the d× r matrix of regression coefficients. Thus, the objective function (??) becomes

J =
∑
i

∥∥αTi Ω − log [Xi]
∥∥2 (9)

Let X be the k × d matrix of initial observations and Y be the k × r matrix of mappings to the Lie
algebra

X =

 [α1]T

...

[αk]
T

 Y =

 [log(X1)]
T

...

[log(Xk)]
T

 (10)

Substituting (??) into (??), one can obtain

J = tr[(XΩ −Y)T (XΩ −Y)] (11)

where the trace replaces the summation in (??). Differentiating the objective function J with respect
to Ω, the minimum is achieved at Ω = (XTX)−1XTY. To avoid overfitting, additional constraints
on the size of the regression coefficients can be introduced

J = tr[(XΩ −Y)T (XΩ −Y)] + β‖Ω‖2 (12)

which is called the ridge regression. The minimizer of the cost function J is given by Ω = (XTX +
βI)−1XTY where I is an d×d identity matrix. The regularization coefficient β determines the degree
of shrinkage on the regression coefficients.

At the initialization of the object, the affine motion tracker estimates a regression function that
maps the region feature vectors to the hypothesized affine motion vectors by first hypothesizing
a set of random motion vectors within the given bounds, determining the transformed regions for

Object Detection & Tracking 19

Fig. 11 Random transformations are applied in object coordinates to generate the training features for regression

function estimation.

these motions, and then computing the corresponding features within each warped region. In the
tracking time, it extracts the feature vector only for the previous object region location and applies
the learned regression function. Sample affine tracking results are shown in Figure ??.

Let M transforms a unit square at the origin to the affine region enclosing the target object
[x y 1]TI = M [x y 1]TO where the subscripts indicate the image and object coordinates respectively.
The inverse M−1 is an affine motion matrix and transforms the image coordinates to the object
coordinates. The aim of tracking is to estimate the transformation matrix Mt, given the previous
images and the initial transformation M0. The transformations are modeled incrementally

Mt = Mt−1.∆Mt (13)

and estimate the increments ∆Mt at each time. The transformation ∆Mt corresponds to motion of
target from time t− 1 to t in the object coordinates.

Suppose the target region is represented with orientation histograms computed at a regular grid
inside the unit square in object coordinates, i.e with α(I(M−1

t)) ∈ Rd where d is the dimension of
the descriptor. Given the previous location of the object Mt−1 and the current observation It, the
new transformation ∆Mt by the regression function is estimated as

∆Mt = ϕ(α(M−1
t−1)). (14)

The problem reduces to learning and updating the regression function ϕ. During the learning step,
a training set of k random affine transformation matrices {∆Mj}j=1...k are generated around the
identity matrix to learn the regression function Ω as illustrated in Figure ??. The approximation is
good enough since the transformations are in a small neighborhood of the identity. The training set
consists of samples {αj , ∆Mj}j=1...k. Since number of samples is smaller than the dimension of the
feature space, k < d, the system is underdetermined. To relieve this, the ridge regression is applied
to estimate the regression coefficients.

Since objects can undergo appearance changes in time, it is necessary to adapt to these variations.
The model update achieves reestimating the regression function. During tracking, a set of random
observations are generated at each frame with the same method described above. The observations
stored for most recent frames constitute the update training set. More details and an importance
sampling based adaptation can be found in [?].

20 Fatih Porikli and Alper Yilmaz

Fig. 12 Tracking features using the KLT tracker.

4.4 Motion Estimation

Optical flow methods are used for generating dense flow fields by computing the flow vector of
each pixel under the brightness constancy constraint, I(x, y, t) − I(x + dx, y + dy, t + dt) = 0.
This computation is always carried out in the neighborhood of the pixel either algebraically or
geometrically. Extending optical flow methods to compute the translation of a rectangular region is
trivial. In [?], the KLT tracker, which iteratively computes the translation (du, dv) of a region (e.g.
25×25 patch) centered on an interest point, is proposed as:(∑

I2x
∑
IxIy∑

IxIy
∑
I2y

)(
du
dv

)
=

(∑
IxIt∑
IyIt

)
.

This equation is similar in construction to the optical flow [?]. Once the new location of the interest
point is obtained, the KLT tracker evaluates the quality of the tracked patch by computing the
affine transformation between the corresponding patches in consecutive frames. If the sum of square
difference between the current patch and the projected patch is small, they continue tracking the
feature, otherwise the feature is eliminated. The results obtained by the KLT tracker are shown in
Figure ??.

In [?] an object tracker that tracks an object as a three component mixture, consisting of the stable
appearance features, transient features and noise process is proposed. The stable component identifies
the most reliable appearance for motion estimation, i.e. the regions of object whose appearance does
not quickly change over time. The transient component identifies the quickly changing pixels. The
noise component handles the outliers in the object appearance, which arise due to noise. An online
version of the EM algorithm is used to learn the parameters of this three component mixture. The
authors use the phase of the steerable filter responses as features for appearance representation.
The object shape is represented by an ellipse. The motion of the object is computed in terms of
warping the tracked region from one frame to the next one. The warping transformation consists
of translation, rotation and scale parameters. A weighted combination of the stable and transient
components is used to determine the warping parameters. The advantage of learning stable and
transient features is that one can give more weight to stable features for tracking, for example, if the
face of a person who is talking is being tracked, then the forehead or nose region can give a better
match to the face in the next frame as opposed to the mouth of the person.

4.5 Kalman Filtering

Let the location of a moving object is defined by a sequence of states Xt. The change in state over
time is governed by the linear system,

Xt = AtXt−1 + η, (15)

Object Detection & Tracking 21

where η is white noise with covariance Ση. The relationship between the measurement and the state
is specified by the measurement equation Yt = DtXt+ ξ, where Dt is the measurement matrix and ξ
is the white noise with covariance Σξ independent of η. The objective of tracking is to estimate the
state Xt given all the measurements up to that moment, or equivalently to construct the probability
density function p(Xt|Y1,..,t).

Theoretically optimal solution is provided by a recursive Bayesian filter which solves the problem
in two steps. The prediction step uses a dynamic equation and the already computed pdf of the state
at time t − 1 to derive the prior probability distribution of the current state. Then, the correction
step employs the likelihood function of the current measurement to compute the posterior probability
distribution.

Kalman filter is used to estimate the state of a linear system where the state is assumed to be
distributed by a Gaussian. The prediction step of the Kalman filter uses the state model to predict
the new state of the variables:

Xp
t = AXt−1

Σp
t = AΣt−1A

T +Ση
t ,

where Xp
t and Σp

t are the state and the covariance predictions at time t. At is the state transition
matrix which defines the relation between the state variables at time t and t − 1. Similarly, the
correction step uses the current observations Yt to update the object’s state:

Xt = Xp
t +Gt[Yt −DtX

p
t], (16)

Gt = Σp
tD

T
t [DtΣ

p
tD

T
t +Σξ

t]−1, (17)

Σt = Σp
t −GtDtΣ

p
t ,

where Gt is the Kalman gain, which is used for propagation of the state models. Note that the
updated state, Xt, is still distributed by a Gaussian. In case system is nonlinear, it can be linearized
using the Taylor series expansion to obtain the Extended Kalman Filter. Similar to Kalman filter,
Extended Kalman filter assumes that the state is distributed by a Gaussian.

Kalman filter has been extensively used in early vision community for tracking, e.g. to track
points in noisy images [?] and to estimate 3D trajectory from 2D motion [?]. When tracking multiple
objects using particle and Kalman filters, one needs to deterministically associate the most likely
measurement for a particular object to that object’s state, i.e. the correspondence problem needs
to be solved before these filters can be applied. The simplest method to perform correspondence is
to use the nearest neighbor approach. However, if the objects are close to each other, then there is
always a chance that the correspondence is incorrect. An incorrectly associated measurement can
cause the filter to fail to converge.

4.6 Particle Filtering

One limitation of the Kalman filter is the assumption that the state variables are Gaussian. Thus,
Kalman filter will give a poor estimations of state variables that do not follow Gaussian distribution.
This limitation can be overcome by using particle filtering [?, ?].

In particle filtering, the conditional state density p(Xt|Yt) at time t is represented by a set
of Ns samples {st,n} where n = 1, .., NS with weights πt,n corresponding to sampling probabil-
ity. These samples are called as particles. The weights define the importance of a sample, i.e.
its observation frequency [?]. To decrease computational complexity, for each tuple (sn, πn) a cu-
mulative weight cn is also stored, where

∑
cn = 1. The new samples at time t are drawn from

St−1 = {(st−1,n, πt−1,n, ct−1,n)} at the previous time t− 1 step based on different sampling schemes.
The most common sampling scheme is the “importance sampling” which can be stated as follows:

22 Fatih Porikli and Alper Yilmaz

− Selection: Select NS random samples ŝt,n from St−1 by generating a random number r ∈ [0, 1],
finding the smallest j such that ct−1,j > r and setting ŝt,n = st−1,j .

− Prediction: For each selected sample ŝt,n, generate a new sample by st,n = f(ŝt,n,Wt,n), where
Wt,n is a zero mean Gaussian error and f is a non-negative function f(s) = s.

− Update: Weights πt,n corresponding to the new samples st,n are computed using the measurements
Yt by πt,n = p(Yt|Xt = st,n), where the probability can be modeled as a Gaussian density.

Using the new samples St one can estimate the new object position by
∑NS

n=1 πt,nf(st,n,W). Particle
filter based trackers can be initialized by either using the first measurements, s0,n ∼ X0, with weight
π0,n = 1

NS
or by training the system using sample sequences. In addition to keeping track of the best

particles, an additional resampling is usually employed to eliminate samples with very low weights.
Note that the posterior density does not have to be a Gaussian.

Particle filtering suffers from sample degeneracy and impoverishment, especially for higher dimen-
sional representations due to the importance sampling.

Note that the particle filter described above assume a single measurement at each time instant,
i.e. the state of single object is estimated. Tracking multiple objects requires a joint solution of data
association and state estimation problems. There exist several statistical data association techniques
to tackle this problem. A detailed review of these techniques can be found in [?]. Joint Probability
Data Association Filtering (JPDAF) and Multiple Hypothesis Tracking (MHT) are two widely used
techniques for data association explained in the following.

4.6.1 Joint Probability Data Association Filter

Suppose we have k tracks and at time t and {Y1t, .., Ymt} are the m measurements. We need to
assign these measurements to the existing tracks. Let Γ be a set of assignments. It is assumed that
the number of tracks will remain constant over time. Let γij be the innovation associated with the
track j due to the measurements. The JPDAF associates all measurements with each track [?]. The
combined weighted innovation is given by

γj =
∑m

i=1
zijγij , (18)

where zij is the posterior probability that the measurement i originated from the object associated
with track j and is given as:

zij =
∑
Γ

p(Γj |Y1t, .., Ymt)Li,j(Γ), (19)

where Lij is the indicator variable, i = 1, ..,m and j = 1, .., k. It is equal to one if the measurement
Yit is associated with track j, otherwise it is zero. The weighted innovation given in (??) can be
plugged in the Kalman filter update equations (??) for each track j.

4.6.2 Multiple Hypothesis Tracking

The major limitation of the JPDAF algorithm is its inability to handle new objects entering the scene
or already tracked objects exiting the scene. Since the JPDAF algorithm performs data association
of a fixed number of objects being tracked over two frames, serious errors can arise if there is a
change in the number of objects. The MHT algorithm does not have this shortcoming.

As motion correspondence is established using only two frames, there is always a finite chance of
an incorrect correspondence. Better tracking results can be obtained if the correspondence decision
is deferred until several frames have been examined. The MHT algorithm maintains several corre-
spondence hypotheses for each object at each time frame. The final track of the object is the most

Object Detection & Tracking 23

likely set of correspondences over the time period of its observation. The MHT algorithm has the
ability to handle occlusions, i.e. continuation of a track even if some of the measurements from an
object are missing.

An MHT iteration begins with a set of current track hypotheses. Each hypothesis is a collection of
disjoint tracks. For each hypothesis, a prediction of each object’s position in the next frame is made.
The predictions are then compared with actual measurements by evaluating a distance measure.
A set of correspondences (associations) are established for each hypothesis based on the distance
measure, which introduces new hypotheses for the next iteration. Each new hypothesis represents a
new set of tracks based on the current measurements. Note that each measurement can belong to
a new object entering the scene, a previously tracked object, or a spurious measurement. Moreover,
a measurement may not be assigned to an object because the object may have exited the scene, or
a measurement corresponding to an object may not be obtained. The latter happens because either
the object is occluded or it is not detected due to noise.

Since the MHT makes associations in a deterministic sense and exhaustively enumerates all pos-
sible associations it is computationally exponential both in memory and time. To reduce the com-
putational load, a Probabilistic Multiple Hypotheses Tracker (PMHT) is proposed by [?] in which
the associations are considered to be statistically independent random variables. Thus, there is no
requirement for exhaustive enumeration of associations. Alternatively, [?] use Murty’s algorithm [?]
to determine k-best hypotheses in polynomial time for tracking points. Particle filters to handle mul-
tiple measurements to track multiple objects have also been proposed, e.g. [?] where data association
is handled in a similar way as in PMHT, however the state estimation is achieved through particle
filters.

4.7 Silhouette Tracking

The goal of a silhouette based object tracker is to find the object region by means of an object model
generated using the previous frames. Silhouette trackers can be categorized into two categories:
matching and contour evolution. Shape matching approaches search for the object silhouette in the
current frame. Contour evolution approaches, on the other hand, track an initial contour to its new
position in the current frame by either using the state space models or direct minimization of some
energy functional.

Important factors to distinguish different silhouette trackers are: What features are used? How
occlusion is handled? and If the training is required or not? Moreover some algorithms only use
information about the silhouette boundary for tracking while other use the complete region inside
the silhouette. Generally the region based approaches are more resilient to noise.

The most important advantage of tracking silhouettes is their flexibility to handle a large variety
of object shapes. Occlusion handling is another issue of silhouette tracking methods. Usually methods
do not address the occlusion problem explicitly. A common approach is to assume constant motion
or constant acceleration, where during occlusion the object silhouette from the previous frame is
translated to its hypothetical new position. Another important aspect related to silhouette trackers
is their capability of dealing with object split and merge. For instance, while tracking a silhouette
of person carrying an object, when the person leaves an object, a part of the person’s contour will
be placed on the left object (region split). These topology changes of region split or merge can be
handled well by implicit contour representations.

4.7.1 Shape Matching

Shape matching often assumes similarity transform from the current frame to the next, therefore
nonrigid object motion is not explicitly handled. It is usually carried out by background subtraction.

24 Fatih Porikli and Alper Yilmaz

Fig. 13 Contour tracking results in presence of occlusion using the method proposed in [?](c©[2004] IEEE).

Once the object silhouettes are extracted, matching is performed by computing some distance be-
tween the object models associated with each silhouette. The object model, which is usually in the
form of an edge map, is reinitialized to handle appearance changes in every frame after the object
is located. This update is required to overcome tracking problems related to viewpoint and lighting
condition changes as well as nonrigid object motion.

[?] performs shape matching using an edge based representation. Hausdorff distance is used to
construct a correlation surface, from which the minimum is selected as the new object position. In the
context of matching using an edge based model, Hausdorff distance measures the most mismatched
edges. Due to this, this method emphasize parts of the edge map that are not drastically affected by
object motion. For instance, in the case of a walking person, the head and the torso do not change
their shape much, whereas the motion of the arms and legs will result in drastic shape changes, such
that, removing the edges corresponding to arms and legs will improve the tracking performance.

In contrast to looking for possible matches in consecutive frames, shape matching can be performed
by computing the flow vectors for each pixel inside the silhouette, such that the flow, which is
dominant over the entire silhouette, is used to generate the silhouette trajectory.

4.7.2 Contour Evolution

Contour evolution requires some part of the object in the current frame overlap with the object
region in the previous frame. Tracking by evolving a contour can be performed using two different
approaches. The first approach uses state space models for contour shape and motion. However,
explicit representations do not allow topology changes such as split or merge. On the other hand,
the second approach directly evolves the contour by minimizing the contour energy using direct
minimization techniques, such as gradient descent.

The state spaces are updated at each frame such that the contour’s a posteriori probability is
maximized. The posterior probability depends on the prior state and the current likelihood, which is
usually defined in terms of the distance of the contour from observed edges [?] defines the state space
by the dynamics of the control points. The dynamics of the control points are modeled in terms of
a spring model, which moves the control points based on the spring stiffness parameters. The new
state (spring parameters) of the contour is predicted using Kalman filter. The correction step uses
the image observations which are defined in terms of the image gradients.

In [?], the state space is defined in terms of spline shape parameters and affine motion parameters.
The measurements consist of image edges computed in the normal direction to the contour. The state
is updated using a particle filter. [?], extends the particle filter to track multiple objects by including
the “exclusion principle” for handling occlusion. [?] proposes the contour is parameterized as an
ellipse. Each contour node has an associated HMM and the states of each HMM is defined by the
points lying on the lines normal to the contour control point. The observation likelihood of the
contour depends on the background and the foreground partitions defined by the edge along the
normal line on contour control points. The state transition probabilities of the HMM are estimated
using the JPDAF.

Object Detection & Tracking 25

Contour evolution minimizes an energy functional either by greedy methods or by gradient descent.
The contour energy is defined in terms of temporal gradient [?], or appearance statistics generated
from, for instance a band around the object boundary and the background regions [?]. The width
of the band serves as a means to combine region and boundary based contour methods contour
tracking methods into a single framework. The object shape and its changes are modeled using level
sets to resolve the object occlusions during the course of tracking. Sample results of the appearance
statistics based approach are given in Figure ??.

5 Final Observations

Tracking approaches that employ a stable model can only accommodate small changes in the object
appearance but do not explicitly handle severe occlusions or continuous appearance changes.

Occlusion, either partial or full, can be classified into self occlusion, inter-object occlusion and
occlusion by the background scene structure. Self occlusion occurs when one part of the object
occludes another, especially for articulated objects. Inter-object occlusion occurs when two objects
being tracked occlude each other, which is the common case in surveillance video. Similarly, occlusion
by the background occurs when a structure in the background e.g. a column, a divider, etc., occludes
the tracked objects. Generally, for inter-object occlusion, the multi-object trackers can exploit the
knowledge of position and appearance of the occluded and occluding objects to detect and resolve
occlusion. Partial occlusion of an object by a scene structure is hard to detect, since it is difficult to
differentiate between the object changing its shape and the object getting occluded.

A common approach to handle full occlusions during tracking is to assume motion consistency, and
in case an occlusion is detected, to keep on predicting the object location till the object reappears.
Among such predictors, Kalman filter can be given as an example. Occlusion can also be implicitly
resolved during generation of object tracks. The chance of occlusion can be reduced by an appropriate
selection of camera positions. For instance, if the cameras are mounted on for birds eye view of the
scene, most occlusions can be eliminated. Multiple cameras viewing the same scene can also be used
to resolve object occlusions during tracking.

Multi-camera tracking methods have demonstrated superior tracking results as compared to sin-
gle camera trackers in case of persistent occlusion between the objects. In many situations it is
not possible to have overlapping camera views due to limited resources or large areas of interest.
Non-overlapping multi-camera tracking has to to deal with sparse object observations. Therefore
additional assumptions have to be made about the object speed and the path in order to obtain
the correspondences across cameras. Methods that establish object correspondence assume 1) the
cameras are stationary and 2) the object tracks within each camera are available. The performance of
these algorithms depends greatly on how much the objects follow the established paths and expected
time intervals across cameras

Object appearance changes can be included in the model update by introducing noise and transient
models. Despite explicit modeling of noise and transient features, trackers often perform poorly, or
even lose tracking, in cases when the performer suddenly turns around during an action and reveals
a completely different appearance, which has not been learned before.

A potential approach to overcome this limitation is to learn different views of the object and later
use them during tracking. In addition, a tracker that takes advantage of contextual information to
incorporate general constraints on shape and motion of objects will usually perform better than the
one that does not exploit this information. The capability to learn object models online may greatly
increase the applicability of a tracker. Unsupervised learning of object models for multiple non-rigid
moving objects from a single camera remains an unsolved problem. One interesting direction, that
has largely been unexplored, is the use of semi-supervised learning techniques for modeling objects.
These techniques (co-training, transductive SVMs, constrained graph cuts) do not require prohibitive
amount of training data.

26 Fatih Porikli and Alper Yilmaz

Overall, additional sources of information, in particular prior and contextual information, should
be exploited whenever possible to attune the tracker to the particular scenario. A principled approach
to integrate these disparate sources of information will result in a general tracker that can be employed
with success in business intelligence applications.

References

1. Davis, J. and Bobick, A., “The representation and recognition of action using temporal templates,” Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico (1997).
2. Karman, K. and von Brandt, A., “Moving object recognition using an adaptive background memory,” in [Time-

varying Image Processing and Moving Object Recognition], Capellini, ed., II, 297–307, Elsevier, Amsterdam, The

Netherlands (1990).
3. Toyama, K., Krumm, J., Brumitt, B., and Meyers, B., “Wallflower: principles and practice of background main-

tenance,” Proc. 7th Intl. Conf. on Computer Vision, Kerkyra, Greece (1999).
4. Wren, C., Azarbayejani, A., Darell, T., and Pentland, A., “Pfinder: real-time tracking of the human body,” IEEE

Transactions on Pattern Analysis and Machine Intelligence 19 (1997).
5. Gao, X., Boult, T., Coetzee, F., and Ramesh, V., “Error analysis of background adaption,” Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, Hilton Head, SC (2000).
6. Stauffer, C. and Grimson, E., “Adaptive background mixture models for real-time tracking,” Proc. IEEE Conf.

on Computer Vision and Pattern Recognition, Fort Collins, CO (1999).
7. Tuzel, O., Porikli, F., and Meer, P., “A bayesian approach to background modeling,” IEEE Workshop on Machine

Vision for Intelligent Vehicles (MVIV) in conjunction with CVPR (2005).
8. Elgammal, A., Harwood, D., and Davis, L., “Non-parametric model for background subtraction,” Proc. European

Conf. on Computer Vision, Dublin, Ireland (2000).
9. Porikli, F. and Wren, C., “Change detection by frequency decomposition: wave-back,” Proc. of Workshop on

Image Analysis for Multimedia Interactive Services, Montreux (2005).
10. Stenger, B., Ramesh, V., Paragios, N., Coetzee, F., and Buhmann, J., “Topology free Hidden Markov Models:

application to background modeling,” Proc. 8th Intl. Conf. on Computer Vision, Vancouver, Canada (2001).
11. Wixson, L., “Detecting salient motion by accumulating directionary consistent flow,” IEEE Transactions on

Pattern Analysis and Machine Intelligence 22 (2000).
12. Mittal, A. and Paragios, N., “Motion-based background subtraction using adaptive kernel density estimation,”

Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Washington, DC (2004).
13. Oliver, N., Rosario, B., and Pentland, A., “A Bayesian computer vision system for modeling human interactions,”

IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000).
14. Porikli, F., “Multiplicative background-foreground estimation under uncontrolled illumination using intrinsic im-

ages,” (2005).
15. Zhao, C., Wang, X., and Cham, W.-K., “Background subtraction via robust dictionary learning,” EURASIP

Journal on Image and Video Processing (2011).
16. Freund, Y. and Schapire, R., “A decision-theoretic generalization of on-line learning and an application to boost-

ing,” Annual Conference on Computational Learning Theory (1995).
17. Boser, B., Guyon, I., and Vapnik, V., “A training algorithm for optimal margin classifiers,” Annual Conference

on Computational Learning Theory (1995).
18. Papageorgiou, C. and Poggio, T., “A trainable system for object detection,” International Journal of Computer

Vision 38 (2000).
19. Mohan, A., Papageorgiou, C., and Poggio, T., “Example-based object detection in images by components,” IEEE

Transactions on Pattern Analysis and Machine Intelligence (2001).
20. Dalal, N. and Triggs, B., “Histograms of oriented gradients for human detection,” Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, San Diego, CA (2005).
21. Zhu, Q., Avidan, S., Ye, M., and Cheng, K.-T., “Fast human detection using a cascade of histograms of oriented

gradients,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, New York, NY (2006).
22. Porikli, F., “Integral Histogram: a fast way to extract histograms in Cartesian spaces,” Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, San Diego, CA (2005).
23. Viola, P., Jones, M., and Snow, D., “Detecting pedestrians using patterns of motion and appearance,” Proc. 9th

Intl. Conf. on Computer Vision, Nice, France (2003).
24. Tuzel, O., Porikli, F., and Meer, P., “Region Covariance: a fast descriptor for detection and classification,” Proc.

European Conf. on Computer Vision, Graz, Austria (2006).
25. Tuzel, O., Porikli, F., and Meer, P., “Human detection via classification on riemannian manifolds,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (2008).
26. Felzenszwalb, P. and Huttenlocher, D., “Pictorial structures for object recognition,” International Journal of

Computer Vision 61 (2005).

Object Detection & Tracking 27

27. Mikolajczyk, K., Leibe, B., and Schiele, B., “Multiple object class detection with a generative model,” Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, New York, NY (2006).
28. Mikolajczyk, K., Schmid, C., and Zisserman, A., “Human detection based on a probabilistic assembly of robust

part detectors,” Proc. European Conf. on Computer Vision, Prague, Czech Republic (2004).

29. Leibe, B., Seemann, E., and Schiele, B., “Pedestrian detection in crowded scenes,” Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, San Diego, CA (2005).

30. Gavrila, D. and Philomin, V., “Real-time object detection for smart vehicles,” Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, Fort Collins, CO (1999).
31. Opelt, A., Pinz, A., and Zisserman, A., “Incremental learning of object detectors using a visual shape alphabet,”

Proc. IEEE Conf. on Computer Vision and Pattern Recognition, New York, NY (2006).
32. Blum, A. and Mitchell, T., “Combining labeled and unlabeled data with co-training,” Annual Conference on

Computational Learning Theory (1998).

33. Levin, A., Viola, P., and Freund, Y., “Unsupervised improvement of visual detectors using co-training,” Proc. 9th
Intl. Conf. on Computer Vision, Nice, France (2003).

34. Kockelkorn, M., Luneburg, A., and Scheffer, T., “Using transduction and multi-view learning to answer emails,”

European Conf. on Principle and Practice of Knowledge Discovery in Databases (2003).
35. Zhu, Q., Avidan, S., and Cheng, K., “Learning a sparse, corner-based representation for time-varying background

modeling,” Proc. 10th Intl. Conf. on Computer Vision, Beijing, China (2005).

36. Comaniciu, D. and Meer, P., “Mean-Shift: a robust approach toward feature space analysis,” IEEE Transactions
on Pattern Analysis and Machine Intelligence 24 (2002).

37. Serby, D., Koller-Meier, S., and Gool, L. V., “Probabilistic object tracking using multiple features,” Proc. 17th

Int’l Conf. on Pattern Recognition, Cambridge, UK (2004).
38. Sethian, J., [Level set methods: evolving interfaces in geometry, fluid mechanics computer vision and material

sciences], Cambridge University Press (1999).
39. Andriluka, M., Roth, R., and Schiele, B., “Pictorial structures revisited: people petection and articulated pose

estimation,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Miami, F (2009).

40. Ross, D., Tarlow, D., and Zemel, R., “Learning articulated structure and motion,” International Journal of
Computer Vision (2010).

41. Zelnik-Manor, L. and Irani, M., “Event-based video analysis,” Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, Kauai, HI (2001).
42. Rao, R., Yilmaz, A., and Shah, M., “View invariant representation and recognition of actions,” International

Journal of Computer Vision 50 (2002).

43. Lowe, D., “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vi-
sion 60 (2004).

44. Freeman, W. and Roth, M., “Orientation histograms for hand gesture recognition,” Intl. Workshop on Automatic

Face and Gesture Recognition, Zurich, Switzerland (1995).
45. Mikolajczyk, K. and Schmid, C., “A performance evaluation of local descriptors,” Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, Madison, WI (2003).
46. Sande, K., Gevers, T., and Snoek, C., “Evaluating color descriptors for object and scene recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence 32 (2010).

47. Belongie, S., Malik, J., and Puzicha, J., “Shape matching and object recognition using shape contexts,” IEEE
Transactions on Pattern Analysis and Machine Intelligence 24 (2002).

48. Förstner, W. and Moonen, B., “A metric for covariance matrices,” Dept. of Geodesy and Geoinformatics, Stuttgart

University (1999).
49. Avidan, S., “Ensemble tracking,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Diego,

CA (2005).
50. Edwards, G., Taylor, C., and Cootes, T., “Interpreting face images using active appearance models,” International

Conference on Face and Gesture Recognition (1998).

51. Paschos, G., “Perceptually uniform color spaces for color texture analysis: an empirical evaluation,” IEEE Trans.

on Image Processing 10 (2001).
52. Canny, J., “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine

Intelligence 8 (1986).
53. Horn, B. and Schunk, B., “Determining optical flow,” Artificial Intelligence 17 (1981).

54. Lucas, B. and Kanade., T., “An iterative image registration technique with an application to stereo vision,” Intl.

Joint Conf. on Artificial Intelligence (1981).
55. Sun, D., Roth, S., and Black, M., “Secrets of optical flow estimation and their principles,” Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, San Francisco, CA (2010).

56. Mirmehdi, M., Xie, X., and Suri, J., eds., [Handbook of Texture Analysis], Imperial College Press (2008).
57. Harris, C. and Stephens, M., “A combined corner and edge detector,” Proc. Alvey Vision Conf. (1988).

58. Laptev, I., “On space-time interest points,” International Journal of Computer Vision 64 (2005).

59. Blum, A. and Langley, P., “Selection of relevant features and examples in machine learning,” Artificial Intelligence
(1997).

28 Fatih Porikli and Alper Yilmaz

60. Schweitzer, H., Bell, J., and Wu, F., “Very fast template matching,” Proc. European Conf.. on Computer Vision,

Copehagen, Denmark (2002).
61. Comaniciu, D., Ramesh, V., and Meer, P., “Real-time tracking of non-rigid objects using Mean-Shift,” Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, Hilton Head, SC (2000).

62. Comaniciu, D., Ramesh, V., and Meer, P., “Kernel-based object tracking,” IEEE Transactions on Pattern Analysis
and Machine Intelligence 25 (2003).

63. Yilmaz, A., “Kernel based object tracking using asymmetric kernels with adaptive scale and orientation selection,”

Machine Vision and Applications 22 (2011).
64. Porikli, F. and Tuzel, O., “Multi-kernel object tracking,” Proceedings of IEEE Int’l. Conference on Multimedia

and Expo, Amsterdam, Netherlands (2005).
65. Porikli, F., Tuzel, O., and Meer, P., “Covariance tracking using model update based on Lie algebra,” Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, New York, NY (2006).

66. Porikli, F. and Tuzel, O., “Object tracking in low-frame-rate video,” Proc. of PIE/EI - Image and Video Com-
munication and Processing, San Jose, CA (2005).

67. Tuzel, O., Porikli, F., and Meer, P., “Learning on Lie groups for invariant detection and tracking,” Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, Anchorage, AK (2008).
68. Porikli, F. and Pan, P., “Regressed importance sampling on manifolds for efficient object tracking,” 6th IEEE

Advanced Video and Signal based Surveillance Conference (2009).

69. Shi, J. and Tomasi, C., “Good features to track,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
Seattle, WA (1994).

70. Jepson, A., Fleet, D., and ElMaraghi, T., “Robust online appearance models for visual tracking,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 25 (2003).
71. Broida, T. and Chellappa, R., “Estimation of object motion parameters from noisy images,” IEEE Transactions

on Pattern Analysis and Machine Intelligence 8 (1986).
72. Rosales, R. and Sclarroff, S., “A framework for heading-guided recognition of human activity,” Computer Vision

and Image Understanding 91 (2003).

73. Tanizaki, H., “Non-Gaussian state-space modeling of nonstationary time series,” Journal of the American Statis-
tical Association (1987).

74. Bouaynaya, N., Qu, W., and Schonfeld, D., “An online motion-based particle filter for head tracking applications,”

Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia (2005).
75. Isard, M. and Blake, I., “Condensation: conditional density propagation for visual tracking,” International Journal

of Computer Vision 29 (1998).

76. Bar-Shalom, Y. and Foreman, T., [Tracking and Data Association], Academic Press Inc. (1988).
77. Rasmussen, C. and Hager, G., “Probabilistic data association methods for tracking complex visual objects,” IEEE

Transactions on Pattern Analysis and Machine Intelligence 23 (2001).

78. Streit, R. and Luginbuhl, T., “Maximum likelihood method for probabilistic multi-hypothesis tracking,” In Pro-
ceedings of SPIE (1994).

79. Cox, I. and Hingorani, S., “An efficient implementation of Reid’s multiple hypothesis tracking algorithm and
its evaluation for the purpose of visual tracking,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 18 (1996).

80. Murty, K., “An algorithm for ranking all the assignments in order of increasing cost,” Operations Research 16
(1968).

81. Hue, C., Cadre, J., and Perez, P., “Sequential Monte Carlo methods for multiple target tracking and data fusion,”

IEEE Trans. on Signal Processing 50 (2002).
82. Huttenlocher, D., Noh, J., and Rucklidge, W., “Tracking non-rigid objects in complex scenes,” Proc. 4th Intl.

Conf. on Computer Vision, Berlin, Germany (1993).
83. Terzopoulos, D. and Szeliski, R., “Tracking with kalman snakes,” in [Active Vision], Blake, A. and Yuille, A.,

eds., MIT Press (1992).

84. MacCormick, J. and Blake, A., “Probabilistic exclusion and partitioned sampling for multiple object tracking,”

International Journal of Computer Vision 39 (2000).
85. Chen, Y., Rui, Y., and Huang, T., “JPDAF based HMM for real-time contour tracking,” Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, Kauai, HI (2001).
86. Mansouri, A., “Region tracking via level set PDEs without motion computation,” IEEE Transactions on Pattern

Analysis and Machine Intelligence 24 (2002).

87. Yilmaz, A., Li, X., and Shah, M., “Contour based object tracking with occlusion handling in video acquired using
mobile cameras,” IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2004).

